Gigantesque !!! Trop pour Einstein…

Le mot gigantesque vient de subir une très forte réévaluation. Désormais, il faudra comparer tout ce qui peut mériter ce qualificatif dans notre Univers à la nouvelle structure découverte par Roger Clowes de l’université du Lancashire à Preston (Angleterre) et ses collègues et révélée par une publication dans les Monthly Notices de la Royal Astronomical Society. Il s’agit d’un grand groupe de quasars (LQG, pour Large Quazar Group en anglais) dont la taille atteint… 4 milliards d’années-lumière. Soit environ le vingtième du diamètre de l’univers observable dont l’horizon est estimé à 40 milliards d’années lumière. La largeur de cette structure n’est guère moins extraordinaire :  1,63 milliard d’années-lumière. Gigantesque – faible mot – donc.

73 quasars

Baptisée Huge-LQG, la structure est composée de 73 quasars. Ces objets, dont le nom signifie quasi-étoiles et qui sont connus depuis 1982, sont des trous noirs très actifs qui aspirent la matière environnante (disque d’accrétion) et la rende très lumineuse. Ils sont ainsi plus brillants que des étoiles malgré leur nature très différente. Leur taille peut atteindre de 10 à 10 000 fois celle du rayon d’un trou noir. La Huge-LQG pourrait être née lorsque l’Univers n’avait que 5 milliards d’années sur les 13,7 qu’on lui attribue aujourd’hui.

Pour tenter de se faire une idée de la taille de ce groupe de quasars, il faut la comparer à des systèmes célestes plus proches de nous. Notre galaxie, par exemple, la Voie Lactée. Eh bien, son diamètre ne dépasse pas les… 80 000 années lumière. Une broutille. Bon, prenons alors la distance qui sépare la Voie Lactée et notre plus proche voisine, la galaxie d’Andromède dont le diamètre atteint les 140 000 années-lumière. Elle ne se trouve qu’à une distance de… 2,55 millions d’années-lumière du Soleil. Soit une distance 1600 fois inférieure à la longueur de Huge-LQG…

Plus de trois fois trop grande…

La taille de la nouvelle structure est donc tout bonnement incommensurable. Tellement, d’ailleurs, qu’elle pose un problème théorique. En effet, elle se trouve en opposition avec un principe édicté par Albert Einstein lui-même et qui stipule que l’Univers, à grande échelle, apparaît identique quelle que soit la direction et le lieu d’où on l’observe. Pour que cela se vérifie, il faut que les grandes structures, comme ce groupe de quasars, ne dépasse pas la taille de 1,2 milliard d’années-lumière. La Huge-LQG se révèle donc plus de trois fois trop grande pour coller avec la cosmologie d’Einstein. Problème… D’autant que les autres structures observées jusqu’à présent étaient loin d’une telle violation. La taille des amas de galaxies connus, par exemple, est d’environ 10 millions d’années-lumières. La Huge-LQG les dépasse de près de deux ordres de grandeur… Incroyable.

Univers en 3D

Ainsi va la science. Une seule observation peut mettre à bas une théorie jusque-là intouchable. Mais prudence… La leçon des neutrinos est encore bien présente dans les mémoires. Einstein en était sorti grandi et le CERN passablement flétri. Il faut donc attendre la réaction des astrophysiciens à cette nouvelle découverte. Les chercheurs qui en sont les auteurs n’ont pas pointé leur télescope vers le ciel pour la trouver. Ils sont simplement étudié les données collectées par la Sloan Digital Sky Survey (SDSS) grâce à huit années d’observation qui ont permis de réaliser la première carte en trois dimensions de l’Univers. On y trouve pas moins de 930 000 galaxies et 120 000 quasars. Les données continuent à être fournies aux astrophysiciens et leur dépouillement devrait s’achever en 2014. Le temps de découvrir bien d’autres monstres de l’espace…


Quasars: tueurs ou créateurs de galaxies ? par AstrophysiqueTV

Michel Alberganti

lire le billet

Cerveau d’Einstein : pas plus gros mais une organisation particulière

Depuis la mort d’Albert Einstein, le 18 avril 1955 à 76 ans, on sait grâce au journaliste Steven Levy que le cerveau du savant a été extrait par Thomas Harvey. Lors de cette découverte, en 1978, ce médecin déclara n’avoir rien trouvé de particulier dans la structure du cerveau pouvant expliquer les capacités exceptionnelles du savant, comme le note Wikipédia. Déception… Le génie n’affecterait donc pas l’organe de l’intelligence par excellence…

C’est ce que l’on croyait jusqu’à l’étude publiée le 16 novembre 2012 dans la revue Brain par trois chercheurs américains, Sean Falk, Federick Lepore et Adrianne Noe.  Ces derniers ont eu accès à 14 photographies du cerveau d’Einstein récemment découvertes, “la plupart prises sous des angles non conventionnels”, indiquent-ils. Deux des photographies révèlent la forme des sillons sur la surface médiane des hémisphères et une autre l’anatomie du lobe droit. Les chercheurs ont ainsi pu étudier la plupart des sillons présents sur le cerveau d’Einstein afin de les comparer à ceux de 85 cerveaux humains décrits dans la littérature. Ils ont ensuite tenté d’interpréter les différences à la lumière que l’on sait sur l’évolution des processus cognitifs humains.

Un cortex préfrontal exceptionnel

Résultats, le cerveau d’Einstein présente un “extraordinaire cortex préfrontal qui pourrait avoir contribué à ses aptitudes cognitives hors du commun. De même, les cortex somato-sensoriels et moteurs près des régions qui représentent le visage et la langue sont très développées dans l’hémisphère gauche. Les lobes pariétaux d’Einstein sont également inhabituels et pourraient expliquer ses capacités de vison dans l’espace et ses dons en mathématique. Si son cerveau présente les asymétries frontale et occipitale typiques, il montre une extrême asymétrie des lobes pariétaux inférieurs et supérieurs. Enfin, les chercheurs ont constaté que, contrairement à ce que disait la littérature, le cerveau d’Einstein n’est pas sphérique, ne présente pas une absence d’opercule pariétale et dispose de sillons latéral (scissure de Sylvius) et postcentral qui ne se croisent pas.

L’association populaire entre l’intelligence et les “grosses têtes” semble infirmée par le cerveau d’Einstein qui ne présente pas une taille exceptionnelle. En revanche, certaines de ses particularités pourraient donc être associées à ses capacités cognitives exceptionnelles. Ce qui semblerait démontrer que l’évolution de cet organe tend à privilégier certaines parties comme le cortex préfrontal. Reste à déterminer si les caractéristiques de ce cerveau permettent de discerner une évolution qui touchera progressivement tous les cerveaux humains ou bien q’il s’agit là d’une exception due au hasard. Il semblerait que, depuis la mort d’Albert Einstein, l’augmentation du nombre de génies sur Terre ne suive pas celle de la démographie…

Michel Alberganti

lire le billet

Speedy Neutrino – Episode 4

 

Précédemment, dans Speddy Neutrino:

Episode 1 – 23 septembre 2011
Le CERN annonce que les 15000 neutrinos de l’expérience OPERA ont franchi les 730 km qui séparent le laboratoire de Genève et celui du Gran Sasso, en Italie, ont parcouru cette distance avec 60 nanosecondes d’avance sur le temps qu’aurait mis la lumière pour effectuer la même distance. Ce résultat contredit la théorie de la relativité fondée sur le fait que la vitesse de la lumière ne peut être dépassée. La statue d’Albert Einstein vacille. Les physiciens du monde entier en ont le souffle coupé. Des centaines d’entre eux se mettent au travail pour tenter de comprendre le phénomène ou de trouver une erreur possible dans l’expérience.

Episode 2 – 18 novembre 2011
Le CERN refait l’expérience en réduisant le délai entre les pulsations de neutrinos. Le résultat est identique. Les neutrinos dépassent toujours la vitesse de la lumière.

Episode 3 – 23 février 2012
Le CERN identifie deux possibilités d’erreurs de manipulation dans l’expérience OPERA. La première concerne un oscillateur utilisé pour la synchronisation des GPS qui aurait pu conduire à surestimer le temps de vol des neutrinos. En d’autres termes, les neutrinos auraient été moins rapides. La seconde cause d’erreur pourrait être engendrée par une connexion de fibre optique dans la liaison entre le signal GPS externe et l’horloge principale d’OPERA qui aurait pu ne pas fonctionner correctement pendant la mesure. Là encore, cette erreur aurait pu conduire à une mesure du temps de vol des neutrinos plus courte que dans la réalité. Le CERN annonce que les impacts potentiels de ces deux sources d’erreurs sont analysés par les chercheurs d’OPERA. Les physiciens respirent… Le CERN annonce une nouvelle expérience pour le mois de mai 2012.

Nouvel Episode – 16 mars 2012

Le CERN annonce avoir refait le calcul du temps de vol des neutrinos émis en septembre 2011 à l’aide d’une autre expérience, ICARUS, installée dans le laboratoire du Gran Sasso. Résultat: ils ne dépassent pas la vitesse de la lumière. “Cela va à l’encontre des mesures initiales rapportées par l’expérience OPERA en septembre”, commente le CERN dans un communiqué.  L’organisme que certains commentateurs, dont quelques physiciens sur ce blog, avaient osé critiqué, en profite pour expliquer comment marche la science par la voix de Sergio Bertolucci, directeur de la recherche au CERN :

La preuve d’une erreur de mesure commence à apparaître au sujet de l’expérience OPERA. Mais il est important d’être rigoureux et les expériences de Gran Sasso, BOREXINO, ICARUS, LVD and OPERA, effectueront de nouvelles mesures avec des faisceaux pulsés depuis le CERN en mai afin de fournir un verdict final. De plus, des vérifications croisées sont en cours à Gran Sasso pour comparer les temps de parcours des particules cosmiques entre deux expériences, LVD et OPERA. Quel que soit le résultat, l’expérience OPERA s’est comportée avec une parfaite intégrité scientifique en ouvrant ses résultats à un large examen et en sollicitant des mesures indépendantes. C’est ainsi que la science fonctionne.

En somme, à ce stade, le CERN ne trouve que des raisons de se féliciter. Suite au prochain épisode pour, peut-être, l’épilogue de cette formidable leçon de physique et de probité scientifique.

Michel Alberganti

lire le billet

Neutrinos : Le chrono serait faux !

Un neutrino détecté grâce aux particules émises après une interaction - CERN

“Selon une source proche de l’expérience”, les neutrinos qui semblaient avoir battu la lumière en septembre 2011 auraient simplement bénéficié d’une mauvaise connexion entre un GPS et un ordinateur. Incroyable, impensable. Une erreur aussi grossière serait donc à l’origine de l’un des résultats les plus tonitruants de la recherche en physique depuis plusieurs décennies. Il y a 5 mois, donc, les scientifiques de l’expérience Opera nous ont joué le grand air de la remise en cause de l’un des piliers de la physique moderne, établi par Einstein il y a plus d’un siècle: le caractère indépassable de la vitesse de la lumière, théorie qu’aucune expérience n’avait, jusqu’alors, remise en question. Or, les neutrinos, particules mystérieuses qui, aux dernières nouvelles, ont une masse, auraient dépassé cette vitesse (300 000 km/s) sur les 731 km de leur trajet entre le CERN de Genève et le laboratoire de Gran Sasso en Italie. On savait que rien n’arrête les neutrinos. Mais de là à dépasser la vitesse de la lumière en se déplaçant, de surcroit, dans la croute terrestre… Nombre de physiciens ont alors failli avaler leur chapeau ou en perdre leur latin. Et des centaines d’entre eux se sont mis à cogiter pour trouver une explication. Cette prise de tête a donné lieu à une multitude de publications scientifiques. Et consommé une quantité considérable d’énergie et de temps.

Connexion défectueuse d’une fibre optique entre un GPS et un ordinateur

Un peu inquiets, les chercheurs du CERN ont refait l’expérience en novembre 2011: même résultat ! Les neutrinos battent la lumière de 60 nanosecondes. Connaissant le sérieux des physiciens travaillant dans ce temple de la recherche en physique, lieu où ils chassent, par ailleurs, le boson de Higgs à l’intérieur du LHC, l’affaire semblait entendue. Et voilà que le journal Science annonce, le 22 février 2012: “Les 60 nanosecondes de différence semblent provenir d’une mauvaise connexion entre un câble à fibre optique reliant un récepteur GPS utilisé pour corriger la durée du trajet des neutrinos et la carte électronique d’un ordinateur”. Après réparation, la mesure de la vitesse de transmission des données entre les deux appareils fait apparaître une différence de… 60 nanosecondes ! Diable ! Cela revient à ajouter 60 nanosecondes au chrono des neutrinos. Tout rentre alors dans l’ordre. La vitesse de la lumière n’est pas violée. Albert Einstein n’a plus a se retourner dans sa tombe…

Encore faudrait-il, tout de même, refaire l’expérience, avec une bonne connexion cette fois. Histoire d’être vraiment sûr que l’on peut consigner cette anecdote dans la liste des plus grosses bourdes expérimentales de l’histoire de la physique. Le CERN peut difficilement éviter de faire rejouer le match.

Les Américains savourent…

Prudence, donc… Chat échaudé… La nouvelle, comme par hasard, émane du journal américain Science. Outre-Atlantique, on ne serait sans doute pas trop mécontent de voir les collègues européens se couvrir de ridicule. La démarche de Science est en effet assez surprenante: voici l’un des deux journaux scientifiques les plus renommés de la planète (l’autre étant Nature) qui sort un scoop à partir d’une source non citée. Pratique peu courante dans l’univers de la recherche. On peut espérer que Science utilisera aussi les fuites provenant de la NASA ou d’autres centres de recherche américains pour en faire profiter la communauté scientifique avec la même célérité.

De son coté, Nature n’a pas tardé à réagir sur son blog en reprenant l’information révélée par Science et en ajoutant une autre rumeur concernant une deuxième source d’erreur possible : un défaut de calcul (interpolation) dans la synchronisation des horloges atomiques utilisées pour mesurer le temps entre les lieux de départ et d’arrivée de la course. Pas de communiqué sur le site du CERN mais une confirmation de l’information diffusée par Science à  l’agence Reuters par James Gilliers, son porte-parole “C’est une explication possible. Mais nous n’en saurons pas plus avant d’avoir effectué de nouveaux tests”.

Michel Alberganti

lire le billet