A quoi pensent les poissons zèbres ?

Le poisson zèbre, c’est le rêve. Aussi bien pour les amateurs d’aquarium que pour les chercheurs. En effet, outre ses couleurs naturelles et ses capacités à régénérer ses blessures, de la colonne vertébrale par exemple, il possède la caractéristique remarquable d’avoir un corps transparent à l’état d’embryon et de larve. L’idéal pour observer à loisir le fonctionnement son organisme bien vivant. D’où l’idée de révéler à la planète ce qui se passe dans le cerveau d’une larve de poisson-zèbre… Nous rêvions tous de le découvrir sans oser le demander : à quoi pensent les poissons ? La réponse d’une équipe japonaise dirigée par Akira Muto, de l’Institut National de Génétique à Shizuoka, ne nous surprend qu’à moitié : à manger. Encore fallait-il le montrer. Et c’est ce que les chercheurs ont réussi à faire.

Une larve de poisson zèbre peut se nourrir  de paramécies dans la mesure où elle est capable d’attraper ce minuscule protozoaire unicellulaire qui se déplace dans l’eau grâce à ses cils. Que se passe-t-il dans le cerveau du poisson qui guette sa proie ? Pour la première fois, les chercheurs sont parvenus à montrer, avec une grande précision et en temps réel, quelles parties du cerveau de la larve s’activent en fonction de la position de la larve autour d’elle.


Pour y parvenir, les chercheurs ont reproduit l’organisation visuotopique du cortex visuel. Il s’agit de la façon dont l’image parvenant sur la rétine s’imprime dans le cerveau. Grâce à un type de marqueur particulier, le GCaMP qui permet de rendre fluorescent les ions calcium à l’oeuvre dans les neurones, les Japonais ont rendu visibles les zones du cerveau qui s’activent lorsque la larve de poisson zèbre suit sa proie des yeux. Sans surprise, c’est dans le lobe situé à l’opposé de l’oeil qui a capté l’image que les neurones s’allument.

L’étude de l’équipe d’Akira Muto a été publiée dans la revue Current Biology du 31 janvier 2013. L’un de ses collaborateurs, Koichi Kawakami, précise : “Notre travail est le premier à montrer l’activité du cerveau en temps réel chez un animal intact pendant son activité naturelle. Nous avons rendu visible l’invisible et c’est ce qui est le plus important”. La technique utilisée devrait rendre possible la visualisation des circuits neuronaux impliqués dans des comportements complexes, depuis la perception jusqu’à la prise de décision. Une possibilité d’autant plus intéressante que, dans sa conception générale et son fonctionnement, le cerveau d’un poisson zèbre ressemble assez à celui d’un être humain.

“A l’avenir, nous pourrons interpréter le comportement d’un animal, y compris l’apprentissage, la mémorisation, la peur, la joie ou la colère, à partir de l’activité de combinaisons particulières de neurones”, s’enflamme Koichi Kawakami. Autre objectif : analyser l’activité chimique du cerveau avec, à la clé, la possibilité d’accélérer le développement de nouveaux médicaments psychiatriques. Pas de quoi rassurer ceux qui craignent que les avancées de la recherche sur le cerveau ne conduisent à une intrusion dans nos pensées les plus intimes. Au risque de découvrir… qu’elles ne sont pas beaucoup plus sophistiquées que celles d’un poisson zèbre. Ce qui serait, convenons-en, une bien mauvaise nouvelle pour notre ego…

Michel Alberganti

lire le billet

Découverte de neurones qui régulent les fonctions cardiovasculaires

Personne ne doute des limites des connaissances actuelles des scientifiques en matière de fonctionnement du cerveau, malgré l’accélération des découvertes engendrées par l’imagerie médicale, telle que l’IRM fonctionnelle. Mais, de là à imaginer qu’un type de cellules nerveuses, de neurones, leur ait échappé… C’est pourtant ce que semble révéler la publication d’un article rédigé par Jens Mittag, responsable d’équipe au département de biologie cellulaire et moléculaire du célèbre Institut Karolinska en Suède, et publié dans le Journal of Clinical Investigation du 21 décembre 2012. Avec des collègues en Allemagne et en Hollande, Jens Mittag a découvert que les hormones thyroïdiennes, bien connues pour agir directement sur les fonctions cardiovasculaires, peuvent également passer par le cerveau pour réguler indirectement ces fonctions, vitales pour l’organisme puisqu’elles comprennent le rythme cardiaque et la pression sanguine.

Régulation de la tension et du rythme cardiaque

Ces travaux ont mis en évidence une population, inconnue jusqu’à présent, de neurones dits “parvalbuminergique” (pv) situés dans la parti antérieure de l’hypothalamus. En réalisant une ablation de ces neurones dans le cerveau de souris, les chercheurs ont constaté une hypertension et une tachycardie dépendante de la température. Ils ont ainsi vérifié le rôle essentiel des nouveaux neurones dans la régulation des fonctions cardiovasculaires. De plus, ce sont les hormones thyroïdiennes qui sont à l’origine du développement de ces neurones dans le cerveau.

Les dangers de l’hypothyroïdie pendant la grossese

Cette découverte démontre, une fois de plus, la complexité du fonctionnement de notre organisme. Ainsi, les hormones produites par la thyroïde n’agissent pas uniquement sur les fonctions cardiaques de manière directe. Pour ce faire, elles passent également par le cerveau grâce à ces nouveaux neurones situés dans l’hypothalamus. De quoi donner de nouvelles pistes de recherche pour le traitement de l’hyper et de l’hypothyroïdie. Pour Jans Mittag, cette découverte est majeure :

“Cela ouvre des voie entièrement nouvelles pour la lutte contre les maladies cardiovasculaires”. Si nous apprenons à contrôler ces neurones, nous serons capables de traiter à travers le cerveau certains problèmes cardiovasculaires comme l’hypertension. Ce n’est pas, néanmoins, pour demain. Dans l’immédiat, cette découverte nous conduit à la certitude qu’il faut traiter l’hypothyroïdie des femmes enceintes. Un faible niveau d’hormones thyroïdiennes peut endommager la production de ces neurones dans le cerveau du fœtus. Ce qui, par la suite, pourrait être à l’origine de problèmes cardiovasculaires”.

Michel Alberganti

lire le billet

Le cerveau en train de se régénérer pour la première fois en vidéo

Cela ressemble au routier d’une grande ville avec ses grands échangeurs. En fait, il s’agit de la circulation des protéines, rendues visibles grâce à des marqueurs luminescents issus de méduses, qui traversent les neurones pour les régénérer. C’est grâce à cette nouvelle méthode d’imagerie que les chercheurs de l’université de Californie du Sud (USC) ont pu réaliser cette vidéo inédite et trop courte qui dévoile l’intérieur des neurones.

Un nouveau cerveau toutes les semaines

“Notre cerveau est démonté et remonté chaque jour”, indique Don Arnold, professeur de biologie moléculaire et informatique au Dornsife College de l’USC et auteur d’un article sur ce sujet dans la revue Cell-Reports du 26 juillet 2012. “D’ici une semaine, votre cerveau sera constitué de protéines entièrement différentes de celles qui le compose aujourd’hui”, ajoute-t-il. “Cette vidéo montre cette régénération. Nous savions que cela se produisait mais, maintenant, nous pouvons voir le processus en train de se produire”.

La découverte du parcours réel des protéines

La nouvelle technique d’imagerie permet de suivre le parcours des protéines vers les deux zones qu’elles nourrissent dans les neurones : l’axone, le câble électrique qui transmet les signaux, et les dendrites, portes d’entrée des neurones pour les signaux provenant d’autre cellules. “Il est connu depuis plusieurs décennies que les protéines ont pour cible soit l’une soit l’autre de ces zones. Mais nous ne comprenions pas comment ce ciblage se produisait jusqu’à ce que nous puissions réellement voir les protéines se déplacer vers l’une ou l’autre”, note Sarmad Al-Bassam, doctorant et principal auteur de ‘l’article paru dans Cell Reports.

“Notre résultat est très surprenant”, précise Don Arnold. “Nous avons découvert qu’au lieu de viser spécifiquement les dendrites, les protéines pénètrent dans les deux zones et qu’elles sont ensuite stoppées pour leur éviter de se déplacer au delà de la portion initiale de l’axone”.

Michel Alberganti

lire le billet